2,723 research outputs found

    Formation Flight Control for Aerial Refueling

    Get PDF
    A controller is designed for an aircraft to autonomously fly formation during aerial refueling. Requirements for a refueling autopilot are stated. A six-degree-of-freedom model is developed for an F-16 lead aircraft and a Learjet LJ-25 wing aircraft. Bare airframe stability of both aircraft is investigated, and stability augmentation is performed. A Matlab Simulink® simulation is built to reproduce the sensor inputs that will be available to the wing aircraft in flight, including disturbances. Control frames are investigated to determine the optimum presentation of the error vector for control during the task of air refueling. Control laws are developed from the initial premise of proportional-plus-integral (PI) control on position error only, and made more complex until desired performance is achieved. Tanker flight profiles are designed for the lead aircraft, and simulations are accomplished to estimate controller performance. Stability and robustness are investigated through the addition of noise, turbulence, and time delays while exploring the capability limits during increasingly aggressive profiles. Modifications for flight test are described, and flight test results are reviewed from seven formation flights of a USAF C-12 and a Learjet LJ-25 under fully autonomous control in an operationally representative refueling environment. Actual controller performance is analyzed and compared to predictions, and suggestions are made for future controllers

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    High Command: Australia and Allied Strategy 1939-1945

    Get PDF

    Stochastic Real-time Optimal Control for Bearing-only Trajectory Planning

    Get PDF
    A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire

    Educational Technology Research Past and Present: Balancing Rigor and Relevance to Impact School Learning

    Get PDF
    Today, the exponential growth of technology usage in education, via such applications of distance education, Internet access, simulations, and educational games, has raised substantially the focus and importance of educational technology research. In this paper, we examine the past and present research trends, with emphasis on the role and contribution of research evidence for informing instructional practices and policies to improve learning in schools. Specific topics addressed include: (a) varied conceptions of “effective” technology uses in classroom instruction as topics for research, (b) historical trends in research approaches and topics of inquiry; (c) alternative research designs for balancing internal (rigor) and external (relevance) validity; and (d) suggested directions for future research. Attention is devoted to describing varied experimental designs as options for achieving appropriate rigor and relevance of research evidence, and using mixed-methods research for investigating and understanding technology applications in complex real-life settings

    Applied Plasma Research

    Get PDF
    Contains reports on two research projects.National Science Foundation (Grant GK-28282X1)National Science Foundation (Grant GK-33843

    The Effect of Pressure Fluctuations on the Shapes of Thinning Liquid Curtains

    Get PDF
    We consider the time-dependent response of a gravitationally thinning inviscid liquid sheet (a coating curtain) leaving a vertical slot to sinusoidal ambient pressure disturbances. The theoretical investigation employs the hyperbolic partial differential equation developed by Weinstein et al. (Phys. Fluids, vol. 9, issue 12, 1997, pp. 3625–3636). The response of the curtain is characterized by the slot Weber number, We0=ρqV/2σ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0=ρqV/2σWe0=ρqV/2σ, where V role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eVV is the speed of the curtain at the slot, q role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eqq is the volumetric flow rate per unit width, σ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eσσ is the surface tension and ρ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eρρ is the fluid density. Flow disturbances travel along characteristics with speeds relative to the curtain of ±uV/We0 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e±uV/We0−−−−−−−√±uV/We0, where u=V2+2gx role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eu=V2+2gx−−−−−−−−√u=V2+2gx is the curtain speed at a distance x role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3exx downstream from the slot. Here g is the acceleration of gravity. When the flow is subcritical (We0We0\u3c1We0We0We0. In contrast, all disturbances travel downstream in supercritical curtains (We0\u3e1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0\u3e1We0\u3e1) and the slope of the curtain at the slot is vertical. Here, we specifically examine the curtain response under supercritical and subcritical flow conditions near We0=1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0=1We0=1 to deduce whether there is a substantial change in the overall shape and magnitude of the curtain responses. Despite the local differences in the curtain solution near the slot, we find that subcritical and supercritical curtains have similar responses for all imposed sinusoidal frequencies

    Formal synthesis of (+)-lactacystin from l-serine

    Get PDF
    A formal, stereocontrolled synthesis of lactacystin has been completed from t-Bu-O-l-serine, providing the key intermediate 13, also useful for the generation of a range of C-9 analogues
    corecore